RD-A161 435 ESTIMTIDN OF STERDV- STRTE CENTRRL NOHE“TS BV THE
REGENERATIVE METHOD OF STMULATIONCU) STANFORD UNIV CA
SYSTENMS OPTIMIZATION LAB P W GLYNN ET AL AUG 85

UNCLASSIFIED AR0-20927 11-MA DAARG29-84-K-8030 F/6 1271




n
$

o

B -1
5 Cee

|
25 s pee

.

FPEREER

FEEE

er
Fe
i (=3 L%

.

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU-OF STANDARDS-1963-A

) ‘.’ -~
W 1'.\.L .

S
.‘,

QACIA 43 L1 AEIPAAIY JC AL Ste

YA RAL LAWY | ROl T W P o CTNN T T e T O e T

’

£ ARra

i
p.
.- ",
R
G



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dcu‘&nmo‘
REPORT DOCUMENTATION PAGE pEpZAD ISTRUCTIONS
. REPO NUMBER . GOVT ACCESSION NOT 3 RECIPIENT’S CATALOG NUMBER
ARO 20927.11-MA
4. TITLE (and Subtitle) ] S. TYPE OF REPORT & PERIOD COVERED
ESTIMATION OF STEADY-STATE CENTRAL MOMENTS Technical Report

BY THE REGENERATIVE METHOD OF SIMULATION

§. PERFORMING ORG. REPORT NUMBER |

7. AUTHOR(e) . CONTRACT OR GRANT WUMBERTe)
Peter W. Glynn and Donald L. Iglehart “=DAAG29-84-K~0030
DR TTRRa e S AL T e N - soL T T |
|

Stanford University
Stanford, CA 94305

T FoNTRRE WY T IS YDAV AEONES o O1T%s
P.0. Box 12211
Research Triangle Park, NC 27709

FTE. MONITORING AGENCY NAME & ADDRESS(I! dilferent from Controlling Office) 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
T8a. DECL ASSIFICATION/ DCOWNGRADING |
SCHEDULE

AD-A161 435

". uunp..ﬁigf PAGES

ot e e ———————
16. DISTRIBUTION STATEMENT (of thie RW)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if ditferent from Repert)

ELECTE Ay
Nov 2 290 g

~ ¢ F

18. SUPPLEMENTARY NOTES

19. KEY WORODS (Centinue en reverse side if necessary and Identify by Nezk number)

D-! #767 statistical analysis of simulation output

al #561 regenerative processes

L

L )

Lj_’ 20. ABSTRACT (Centinue en reverse side Iif necosoary and Identify by bleck aumber)

.'.':.J Let X be a positive recurrent regenerative process on state space

bie S with steady-state distribution =x. Given a function f : § + R, we
consider the ptoblem of estimating the steady-state central moments

_..::2 ue(f) = fs (£(x)-r)k n(dx) where r is the steady-state mean of

lc'_"':; £(X(+)). We obtain strong laws, central limit theorems, and confidence

intervals for our estimators, and present numerical results.

DD 5n'>s 1473  coimon oF 1 nOV 68 1s cesoLETE

8 5 l 1 l 8 2 5 3 o uculm"v. cuhsfcrfcurnfn érfucs »AGE m




TP TR T Ry P T T LW T P S T W O I N e
w—— ~

o 30927.//-mpa

ESTIMATION OF STEADY-STATE CENTRAL MOMENTS BY THE
REGENERATIVE METHOD OF SIMULATION

by

Peter W. Glynn

Accession For

NTIS GRAgI g
DTIC TaR g '
Unannounceq

Justificntig
\* n-\\-
TECHNICAL REPORT NO. 11 By I
e !
| Distriv ey .,

and

Donald L. Iglehart

August 1985 |_Avallititiny roaeg
i /op 4

Prepared under the Auspices

of — _

*
U.S. Army Research Contract
DAAG29-84-K-0030° ’

Approved for public release: distribution unlimited. &”gq =

Reproduction in Whole or in Part is Permitted for any
Purpose of the United States Government

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

*
This research was also partially supported under
National Science Foundation Grant MCS-8203483.

.‘l‘.’-‘

N ',:.'\“.'j';j' S’Js.f A.S Lls.\z.x -X'.L_‘}




ABSTRACT
Let X be a positive recurrent regenerative process on state space S
with steady-state distribution =n. Given a function £ : § » R, we
congsider the problem of estimating the steady-state central moments
He(£) -_fs (f(x)-r)k n(dx) where r 1is the steady-state mean of
£(X(¢)). We obtain strong laws, central limit theorems, and confidence

intervals for our estimators, and present numerical results.
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l. INTRODUCTION

~ w5 e

Let X = {X(t) : t < 0} be a (possibly) delayed regenerative process
taking values in state space S, with regeneration times T(-1) = 0 < T(0)
< T(1) < e+ (to incorporate regenerative sequences {l!.n :n> 0}, we pass
to the continuous time process X(¢) defined by X(t) = X[t], where [t]
is the greatest integer less than or equal to t). Under quite general

conditions (see, for example, p. 185 of HEYMAN and SOBEL (1982)), there

exists a probability distribution ® on S such that

(1.1) r (f) = % (I: £(X(s)) ds » £ £(y) n(dy) = r(£)
8.8. as t + =, for a broad class of functions f£: S + R.

An important problem that has been extensively studied in the
simulation literature concerus the estimation of the parameter r(f); r(f)
has the interpretation, as is clear from (l.1), as the steidy-atite mean of
] £(X(*)). In certain applications, however, it may also be of interest to
] estimate the fluctuations of f£(X(+)) around its steady-state limit. To

be precise, sat fc(°) a f(¢) - r(f) and put v(f) = t(fi) (for g : S * R,
define g" : S+ R via g‘(x) = g(x) » g(x) o¢¢ g(x) (m times)).
; Letting fi play the role of f in (l.1), we obgserve that v(f) may be
regarded as the steady-state variance of f£(X(+)).

More generally, let u-(f) - r(.‘.:); then -u-(f) is the m'th steady-

state central moment of f£(+). Clearly, ul(fl =0 and "2(f) = v(f).

Note that estimation of u-(f) = r(f:) is not a special case of the

standard regenerative method (see, for example, IGLEHART (1978)), since

fc depends on the unknown parameter r(f), which itself must be
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estimated. Our goal, in this paper, 1s to develop an estimation
methodology for the central moments, u..(f). In Section 2, we prove the
required limit theorems upon which our methods are based. Section 3
develops confidence intervals for central moments, and numerical results

are presented in Section 4.

2. ESTIMATORS AND LIMIT THEOREMS FOR CENTRAL MOMENTS

We assume throughout the remainder of this paper that:

(2.1) z(!l(fz‘) + :f“) <e
j where

. T(n)
T, = T(n) - T(n-1) and Y (g) = / g(X(s))ds
T(n-1)
for functions g : S + R. Our goal is to estimate the central moments
"k(f)' 1<{k<m

The following binomial representation of the central moments is

ety et -l

crucial to our development:

(2.2) W (5 = (£ - e(e0)"
Y %y cedy (opykd popykd
) (J) r(£’) (~1) r(f)
J=0

Por g: S+ R, set r(n,g) = ?n(g)/;n, where

B LTI DIt ._" "’\ YR " LA NN ‘.'._'» S e -"--'r:'-'.';."-n"--‘\;-
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Relation (Z.i) suggests that

k .
(2.3) u(n,k) = (';) r(n, &) 1)*¥I £(a, 0¥
3=0

should be a reasonable estimator for "k(f)'
(2.4) PROPOSITION. u(n,k) + W (f) a.s. a8 n+=, for 1<k 2a

PROOF. Froa (2.2) and (2.3), it is clear that we need only show that
r(n, fk) > r(fk) a.s. as n + =, for k { 2m. The strong law of large
numbers applies to both the numerator ?n(fk) and denominator ;n’
yielding the required convergence, provided that E[Yl(fk)l <{® and

Btl <@, Clearly, (2.1) implies that Etl < 5, whereas the inequality

X (1) K
By, (£ < E(J |£(X(8))|" ds)
T(0)

(1) 2
<K/ (1 + £(X(8))“™) ds)
1¢0)

- BT, + BYl(fZ') <w

1

. provides the finiteness of the other moment.




Rl L s L aos e o o ne i o ok iied ek Amt Bt dutthet oA St Aad ik ikt di kR A A

By Proposition 2.4, u(n,k) 1is strongly consistent for "k(f)‘ To
-l/Z)

state our next result, we shall use the notation op(n to denote

the sequence of random variables (r.v.'s) 6n such that nl/2 Gn = 0 as
n+ o, vhere => means weak convergence. The following properties follow
easily from our definition and standard results about weak convergence (see

pe 92 of CHUNG (1974)):

-1/2 - ~-1/2
(2.5) 1) 1if xh - op(n ) and Yn op(n ),
then 2z = X + - op(n-l/z)
11) 4f X => X and Y = op(n"” %,
then Zn - xh . Yi = op(n-llz)

For our next limit result, we will need the following central limit

theorea (CLT).

(2.6) PROPOSITION. For 1<k < m, n/?

(x(n,f ky - x(£%)) = o(£%)
80,1) as o+ e, vhere o(g) = EZ:(g)/(Exp?, Z (8) = Y (8) - r(@)7,,
and N(O,1) 1s a mean zero normal r.v. with unit variance.

Proposition 2.6 is well known in the regenerative simulation
literature (see, for example, Iglehart (1978), it is a CLT for estimators

of the uncentered steady-state moments of f(X(°¢)).

(2.7) PROPOSITION. u(n,k) = r(a,f) + o (a /%) for 1 <k <m, vhere
¥
fk(.) - fc(.) - kﬂ_l(f) tc(.)’

s Cole, -/".‘ P e . ..-
.
Lfl A»\(t Tt e A.L\ .{‘.{
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PROOF. Obgerve that

k
(2.8) u(n,k) = } (?) r(n, ) (-1)¥I ()
i=0

k-1 i
+ 1 (?) r(n, ) -D¥T (2o, 0% - x(e)¥I) .
i=0

Evidently, for 0 < p { k,

2.9 2Y(r(a,0)* - 2(6)Y) r(n,£P

2-1
= 2t ?(c(n,£) - r(£)) o ( ) o)) £(f)
j-

173y c(n,£P) .

From the proof of Proposition 2.4,

2-1
2,100 (J =, eV ¢ r(a, ) » 2(HH*L - £(£P)  aus.
j=0

as n +» o, so that (2.9) and (2.10) together imply that

(2.11) (r(n,f)"’ - r(f)"') N r(n,£P)

-1/2

= (2(n,£) - £(£)) » 2e(OI*! « £(£P) + o % .

By noting that the first sum on the right-hand side of (2.8) is r(n,ft),

we can combine (2.8) and (2.11) to obtain

R N A R R S
¥ '»"* o L .\':'."‘. S\.‘. M SN A A AN SV RS




w(a,k) = £(n, £5) + (r(a,£) - ()

k-1 - - -
e T () ey DFT -y ()T 4 o a7V
j=0 P

= ¢(n, f.:) - r(n, fc) o k

k-1
e ) (k-l) r(ed) (-p¥1d 1.'(f)k":l-1 + 0 (n-1/2)
j-o j P

= r(n, £) + op(n-uz) .
ut U(n) - (u(n,l). “esy “(n.l))r and Bp=- (Hl(f), ceey pm(f))'r-

We take all vectors as column vectors and T denotes transpose.

(2.12) THEOREM. n'/%(B(n) - u) = N(0, C(£)) where N(O, C(£))
is a multivariate nomi r.v. with mean vector O, and covariance matrix

C(f) with elements given by

2
cij(f) = zzl(fi) zl(fj)/(zzl) .

PROOF. Let & be a arbitrary column vector in R', and note that

Proposition 2.7 implies that
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a¥(U(n) - w

" *

‘ -
| = L oa(raus) - w®) + o, 1/2,
Y e 3£/ -1/2
- 1£1 a, Z(£)/7, + o0 ('), F
| where
|
= .1 B
Z(g =n kzl z,(g) , for g: S+ R.

In the second equality we have used the fact that “1(f) - r(fi). Standard

arguments then show that I
a2(aT(u(n) - W) = (af c(6)a)'’? N¢o,1)

as n + »; the Cramer-Wold device (BILLINGSLEY (1968), p. 48) then ylields

the desired theorem.
| Theorem 2.12 gshows that our estimators have an asymptotically norr. .

distribution; it is, of course, a limit theorem expressed in terms of an

index n corresponding to the number of regenerative cycles simulated.
However, in certain settings, it is more natural to express limit theorems
in terms of t, the amount of time that the process X has been

simulated. Then, N(t) = max{n : T(n) < t} 1is the number of regenerative

cycles completed by time t. Set




u(N(t),k); N(t) > 1
u (k) = {
0; Nt) <1,
and

nt = (uc(l), vy ut(m)) -

(2.13) PROPOSITION. u (k) + p(f) a.s. as t +=, for 1<k 2m.

This follows immediately from Proposition 2.4 and the fact that

H(t) >® 3,8, a8 t » o,

(2.14) THEOREM. gl’z(ut - ) = N(O, C*(f)) as t + =, where C*(f)
is given by

*
3

) = EZ)(£,) 2 (¢

j)/Etl .

The proof of Theorem 2.14 is based on making a “"random time change” by
substituting the process N(t) for the parameter n 1in Theorem 2.12,

giving

1/2(

N(e)" “(O(N(e)) - w) = N(O, €(£)) ;

since N(t) = t/Etl, we obtain the result. For a rigorous proof of a more
general result, see Theorem 3.10 of GLYNN and IGLEHART (1985).

Specializing our results to the steady-state variance, we observe that
the estimator u(n,2) (ut(Z)) is asymptotically normal with limiting
variance given by Ezl(fz)zl(ztl)2 (Ezl(fz)Z/Etl). Since Ezl(fz)2 =

!Zl(fz)z. it follows that the asymptotic variability of our steady-state
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variance estimator is unaffected by having to estimate r(f). (Note that
Ezl(fi)z/(Etl)z is the variance of the limiting normal r.v. which
approximates r(n, fi).) For higher-order central moments, however, the

variances will generally differ.

3. CONFIDENCE INTERVAL GENERATION
In this section, we use our limit theorems of Section 2 to construct
confidence intervals for the k'th central moment. To accomplish this, we

need consistent estimators for the covariance matrices C(f) and C*(f).

Set
T(k) .
A (n,1,1) = | (£(X(8)) - r(n,£))
T(k~-1)
T(k)
- J (£X(u)) - r(n,£))d du ,
T(k-1)
and

(1,9 =2 2 A(n,1,1) .

(3.1) PROPOSITION. For 1< i, j < m,

A1, » EYI(ft) Yl(f'l) a.s. as n > .

~~~~~

r L e e T Y ™ gt a e RIS AR R I I R A R I T S ) > PR - " Lot e R B .
y )". ) :‘. - - -":c",-.‘ ,,.'~ .n. ' " P : .-‘,,.- ;-‘, - ‘.- N "7'{ '. l .“q, 4?*\_'(1— . - g" -I\ \_ -4\ a v-:,'- '-_ -“ 4. :_.{., \_.. ’:n .‘.. -%_--':‘A(-v-‘,’ ‘..r.
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]

2,

<
=,

\ PROOF. Note that

3 - 1 % 1y (3 K+ K+t

4 A(1,9) = ) (3) (1) 17 x(a,)

o kw0 =0

R

i 1 ® 1k JoA, _k+2

3%y . . ;p&l Yp(f ) ) Yp(f ) Tp

‘-'« i

- + 3 i *) () 0¥ wp

o k=0 2=0

M

- B (6176 v e37h S

.

L = ey, (1) ¥, (ed)

?, 1*"¢ 1*"¢

by

9]

x a.8. as n + =, by the strong law of large numbers.

i

i Let

[

Ly -L 1z - -1) A - A
| C(n,1.9) = =7 {A,(1,3) = Ju(n, 3=1) A (1,1) = u(n,§) A (1,0)
5 a

!

* - {u(n, 1-1) An(l._‘l)

. + 1ju(n, 1-1) u(n, 3-1) A (1,1)
§,
-_;: + tu(a, 1-1) w(n,3) A (1,0
i

' - u(a,1) X (0.3)
13

. n

::: + ju(n,1) u(nm,j-1) An(O,l)

¥

- + u(n,1) u(n,}) A (0,00} .
h::, Propositions 2.4 and 3.1 together yield the following result.
R 10
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. (3.2) PROPOSITION. For 1< 1,j {m, C(n,i,j) * cij(f) a.s. a8 n + =,
) Application of the converging-together lemma (BILLINGSLEY (1968),
p. 5) to Theorem 2.12 and Proposition 3.2 shows that if ckk(f) >0
(1 <k <m), then
»
g ¢, ()2 C (0
g [u(n,k) - 2(8) —Tz—_ , u(n,k) + 2(6) ) —17z -]
L)
'
.’ is an asywptotic 100(1-8)2 confidence interval for "k(f)’ where z(6)
solves P{N(0,1) < z(8)} = 1 - &/2.
A similar confidence interval can be based on simulation of X to
- time t. Set
[}
[ | CCINCE), 1, 3D Tyeo Nte) <1
» ct(ivj) -
2 0 ; N(t) <1
13
:
R (3.‘) PROPOSITION. For 1 _<. 1, j S m, ct(i’j) hd c:j(f) a.8. as t » o>,
:
This result is an immediate consequence of Proposition 3.2, and leads
' to the following asymptotic 100(1-56)% confidence interval for "k(f)
3 (assuming C ,(f) >0, 1 <k < m):
{:
% cp, ()12 % (£)1/2
(3.5)  [u,(k) ~ 2(8) ——172— » u (k) + 2(8) —15—]
i‘ '
"
Y 11
b

B
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-}‘J For the steady-state variance v(f) = pz(f), we can use our knowledge
that p.l(f) = 0 to obtain a simpler family of estimates for sz(f) and
C3,(£). Note that
a4 2 2,2
¢ (3.6) _Ezl(fz) = Ezl(fc)
: . 2.2 _ 22
& BY, (£)) 2v(£) EY (£ )z, + v(£)" E1] .
Set
K<
e ) = 1—2- (X (2,2) - 2u(n,2) X (2,0) + u(a,2)? X (0,0)}
"a
6
) 0 -
- 0 c(N(t)) TNe) N(t) > 1
- C =
5 0; N(t) < 1
Propositions 2.4 an;d 3.1 show that Co(n) + cij(f) a.8. as n » o and
[
™ cd - Cyg(f) .. a8 >, provided m> 2. Thus, 1f Cpy(f) > 0, the
s
1 following intervals are 100(1-8)X asymptotic confidence intervals for
‘W
, v(f):
¥ ‘
X co(n)l/2 c (n)
% (3.7) [u(2,n) - 2(6) =T u(2,n) + z(8) ﬁ—]
% ()2 )1/
o (3.8) [ut(Z) - z(8) —?72— , ut(Z) + 2(8) 7‘2—] .
:

1a* 3"
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4. NUMERICAL RESULTS \
To illustrate the results obtained in the previous section we have

simulated three models: the waiting time process in the M/M/1 queue (p =

0.5), an (s,S) inventory model, and the classical repairman model. For all

three models we selected f to be the identity function (f(x) = x) and

k = 2, so that our goal was to estimate the variance of the steady-state

distribution.

(4.1) EXAMPLE. M/M/1 Queue. This model is the single server queue with
Poisson arrivals and expounential service times. We simulate the waiting
time process W = {wn : n > 0}, where wn is the waiting time (exclusive
of service time) of the nth customer. Our simulations were carried out for
arrival rate A = 5 and service rate p = 10, and hence the traffic

intensity p = 0.5. This guarantees that "n => W as n +> =,

Regenerative cycles begin at those Qalues of n for which Wn = 0. The
quantity being estimated here is GZ{W} = 3,0. We did 50 replications of
5000 cycles each. The sample mean of the 50 point estimates, u(2,5000),

was 3.0417, and the sample mean of the 50 point estimates of sz(f)llz,

¢%(5000)}/2

, was 13.2782. As a result, the sample mean of the 90%
confidence intervals was [2.7328, 3.3506]. The coverage probability was

58%.

(4.2) EXAMPLE. (s,S) Inventory Model. This model is a periodic review
inventory model with a stationary (s,S) ordering policy. An (s,S) policy

is characterized by two positive integere: s and S with s ¢ S. If the

13
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amount of inventory on hand plus on order is less than s, order to bring
the sum up to S. If the inventory is greater than or equal to s, do not
order. Let xn denote the level of inventory on hand plus on order in
period n immediately after the ordering decision. If dn denotes the

demand in period a, then

X, -d , d <X -5

, otherwise.

We assume that s < X; < S. The state space of (X :1n >0} s (s, s+

1, ¢ee , S}s PFor this example we have selected s = 6, S = 10, and

( 3/8 , j=0

1/ , jJ=1

P{d =3} =4 3/16, j3=2
1/8 , 3 =3

1/16 , 3 =4

Again we simulate to estimate az{x} = 2.3333. .Using i =10 as the
regenerative state we run 50 replications of 1000 cycles each. The sample
mean of the 50 point estimates, u(2,1000), was 2.3352 and the sample mean

172 91000)1/2, vas 1.2396. The

of the S0 point estimates for sz(f)
sample mean of the resulting 50 90Z counfidence intervals was ([2.2708,

2.3997). The coverage probability was 94%.

(4.3) EXAMPLE. Classical Rapairmen Model. This model is a continuous
time Markov chain with X(t) denoting the number of failed units under-

going or waiting for service at the repair facility at time t. We have

14
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m + 0 identical machines each with an exponential failure time with
failure rate A. At most n of the units operate at one time, the other
s being thought of as spares. When a unit fails, it is sent to a repair
facility consisting of s repairmen (servers) having exponential repair
(service) times with repair rate p. With these assumptions {X(t) :

t > 0} 1is a birth-death process with state space {0,1, ... , m + n},
birth parameters ki a(n~- (L - -l+)k, and death paraneters Wo=we
min(i,s). For this example we have used n = 10, a = 4, A= 1, p= 4, and
s = 3. Again we are interested in estimating the steady state variance,
az{x) = 5.231. We ran 50 replications of 1000 cycles each with the
regenerative state taken to be 1 = 2. The sample mean of our 50 point
estimates, u(2,1000), was 5.1916, and the sample mean of the 50 point

estimates of sz(f)llz, c%(5000)1/2, vas 11.5562. The sample mean of
the 50 902 confidence intervals was [4.5905, 5.7927]). The coverage prob-

ability was 74Z.

13

o
E
4
'3

AL W RS

e TH R




e el o A m i aile e B AS LA LR Bty .-—-—-z-.-.--T

REFERENCES
BILLINGSLEY, P. (1968). Convergence of Probability Measures. Johun Wiley,
New York.

CHUNG, K.L. (1974). A Course in Probability Theory. Academic Press, Nw

York.

GLYNN, P.W. and D.L. IGLEHART (1985). The joint limit distribution of the
sample mean and regenerative variance estimator. Forthcoaing
technical report, Department of Operations Research, Stanford
University, Stanford, CA.

HEYMAN, D.P. and M.J. SOBEL (1982). Stochastic Models in Operations

Research, Volume 1. McGraw-Hill, New York.

IGLEHART, D.L. (1978). The regenerative method for simulation analysis.

In Current Trends in Programming Methodology —— Software Modeling

(K.M. Chandy and R.T. Yeh, editors). Prentice-Hall, Englewood Cliffs,

N.J.

16

AR




s e a B L S R e A T e S ‘-:J'J-T

W

1

o il

. e,
AT A
Jelalv el

s

V }
L
IAOSRGIENL,

Rt o

T . . . .
PRI e, : . g &

T T A T T S i T T AT T




